A novel method is introduced to determine asymmetry, the lateralization of brain activity, using extension of the algorithm empirical mode decomposition (EMD). The localized and adaptive nature of EMD make it highly suitable for estimating amplitude information across frequency for nonlinear and nonstationary data. Analysis illustrates how bivariate extension of EMD (BEMD) facilitates enhanced spectrum estimation for multichannel recordings that contain similar signal components, a realistic assumption in electroencephalography (EEG). It is shown how this property can be used to obtain a more accurate estimate of the marginalized spectrum, critical for the localized calculation of amplitude asymmetry in frequency. Simulations on synthetic data sets and feature estimation for a brain–computer interface (BCI) application are used to validate the proposed asymmetry estimation methodology.