Brain-inspired learning rules for spiking neural network-based control: a tutorial

Abstract

Robotic systems rely on spatio-temporal information to solve control tasks. With advancements in deep neural networks, reinforcement learning has significantly enhanced the performance of control tasks by leveraging deep learning techniques. However, as deep neural networks grow in complexity, they consume more energy and introduce greater latency. This complexity hampers their application in robotic systems that require real-time data processing. To address this issue, spiking neural networks, which emulate the biological brain by transmitting spatio-temporal information through spikes, have been developed alongside neuromorphic hardware that supports their operation. This paper reviews brain-inspired learning rules and examines the application of spiking neural networks in control tasks. We begin by exploring the features and implementations of biologically plausible spike-timing-dependent plasticity. Subsequently, we investigate the integration of a global third factor with spike-timing-dependent plasticity and its utilization and enhancements in both theoretical and applied research. We also discuss a method for locally applying a third factor that sophisticatedly modifies each synaptic weight through weight-based backpropagation. Finally, we review studies utilizing these learning rules to solve control tasks using spiking neural networks.

Publication
Biomedical Engineering Letters, Vol.15, pages 37–55
Choongseop Lee
Choongseop Lee
Researcher, LG PRI

His research interests include machine learning and computational neuroscience.

Yuntae Park
Yuntae Park
Researcher, Infinitree

His research interests include machine learning algorithms, deep learning, and reinforcement learning.

Jiwoon Lee
Jiwoon Lee
MS Student

His research interests include computational neuroscience, signal processing and brain-computer interfaces.

Cheolsoo Park
Cheolsoo Park
Professor

His research interests include machine learning, adaptive signal processing, computational neuroscience, and wearable technology.